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A wavelet-Galerkin procedure is introduced in order to obtain transient and periodic
solutions of multi-degree-of-freedom (d.o.f.s) dynamical systems with time-periodic
coe$cients. Numerical comparisons, achieved with a Runge}Kutta method, emphasize that
the wavelet-based procedure is reliable even in the case of problems involving both smooth
or non-smooth parametric excitations and a relatively large number of degrees of freedom.
The procedure is then applied to study the vibrations of some theoretical parametrically
excited systems. Since problems of stability analysis of non-linear systems are often reduced
after linearization to problems involving linear di!erential systems with time-varying
coe$cients, the method is shown to be e!ective for the computation of the Floquet
exponents that characterize stable/unstable parameters areas and consequently allows
estimators for stability/instability levels to be provided. Stability diagrams of some
theoretical examples including a single-degree-of-freedom Mathieu oscillator and
a two-degree-of-freedom parametrically excited system, illustrate the relevance of the
method. Finally, future studies are outlined for the extension of the wavelet method to the
non-linear case.
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1. INTRODUCTION

In this paper, linear di!erential systems with ¹-periodic time-varying coe$cients which are
excited by an external force are investigated. The aim is "rst to describe an e$cient
wavelet-based procedure which allows transient solutions to such problems with any
general time-varying functions to be computed (further developments will then extend the
method to the stationary case dealing with periodic orbits). The procedure is then
numerically validated using a few mathematical examples exhibiting various a priori
di$culties. The motivation for such choices is to highlight the robustness of the
wavelet-based method rather than studying actual mechanical systems. Nevertheless, this
introduction is intended to explain why searching transient or stationary responses of
dynamical systems is interesting and to highlight the state-of-art of linear di!erential
systems with time-varying coe$cients and especially its applications in the framework of
mechanics and non-linear dynamics. Focusing investigations either on the study of small
amplitude vibrations of mechanical systems with varying sti!ness (see mechanical instances
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thoroughly depicted in the book of Nayfeh [1]) or the stability analysis of non-linear
systems, investigations often consist in "nding periodic solutions. In the non-linear case, the
system is linearized around a known periodic solution thanks to a perturbation technique
so that a linear di!erential system with periodic time-varying coe$cients is obtained. By
linearization, the non-linear case is also equivalent to the study of the free oscillations of
a linear di!erential system with time-varying coe$cients. Summing up, the problem of
interest is, on the one hand, strongly related to parametrically excited systems (eventually
involving gyroscopic components) and, on the other hand, linked to the important question
of (linearized) stability of smooth non-linear dynamical systems.

Searching periodic orbits of smooth linear systems governed by ordinary di!erential
equations with time-varying coe$cients can also be formulated using the following
approach:

f Theoretical approach: linear di!erential systems and Floquet theory.
f Approximate computational approach using analytical methods.
f Approximate computational approach using numerical methods.

Though the theoretical framework of linear di!erential systems with time-varying
coe$cients is well known, and the mathematical background may be found in many
references (see references [1, 2]), mathematical solutions are extremely di$cult to compute
from a practical point of view. The problem of searching for periodic solutions may be
solved by building, for instance, a PoincareH map of the dynamic, reducing the problem to
a theoretically questionable linear system of algebraic equations.

Analytical methods have been used extensively to compute approximate periodic
solutions of non-linear di!erential systems. When linearizing these systems in the
neighbourhood of the previously obtained orbits, stability is then investigated thanks to
a similar analytical method. It is noticeable that many de"nitions exist to depict stability
[3], one of the most important being the de"nition of linearized stability. Basically,
analytical methods are very important to study vibrations and questions of stability [4].
Numerous analytical methods are introduced in references [5, 6] and many monographs
which can be found in the literature are quoted below. Among analytical methods, normal
form method developments are described in references [7}10] for the theoretical framework
and in references [11}14] for practical calculations; in reference [9] Floquet theory is
developed in the frame of normal form. In reference [13], Smith introduces a peculiar
normal form theory, using a vector space of time-varying coe$cients; reduction of smooth
non-linear di!erential systems to linear systems is achieved here according to this vector
space and not only to a scalar "eld. This approach is interesting whether or not
time-varying components belong to the same vector space whose dimension is small enough
to allow practical computations. Numerous other analytical methods are also commonly
used such as perturbation methods [15], asymptotic methods [16], multiple scales methods
[1], averaging methods or harmonic balance methods [17]. In reference [18], relations
between normal forms and averaging are reported.

Standard parametrically excited systems refer to the well-known Mathieu and Hill
equations issued from the stability analysis of a column (see reference [1] for a detailed
bibliography): such systems were studied using Hill's determinant method [1], normal
forms [9, 12] or multiple scales [1]. Stability analysis of elastic systems was investigated by
Bolotin [19]. The stability limit of parametrically excited systems has been investigated via
Fourier series [20] and recently via a generalized Bolotin method [21]. Stability analysis of
periodic systems was also discussed by Guttalu et al. [22] using truncated point mappings
and several results were presented for the Mathieu equation. In the successive papers
[23, 24], Sinha et al. developed an original technique in order to investigate the stability of
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non-linear systems. By combining Chebyshev polynomial expansions and
Lyapunov}Floquet transform, a time-invariant form for periodic time-dependent systems
was successfully obtained; a higher order analysis via normal form and symbolic
computations was then considered. These methods seem to be very powerful, but mixed
techniques still have to be coupled (Chebyshev expansions, normal form analysis, etc.).

Numerical methods have been developed, "rst to "nd periodic solutions and second, to
follow such solutions by continuation techniques [25] or to study PoincareH mapping
numerically. Searching periodic solutions using continuation techniques (or "xed point of
a PoincareH map) often increases the dimension of ordinary di!erential equations that have
to be solved using standard integration methods (of the Runge}Kutta type for example) and
the Newton method [26]. Generally speaking, it is neither possible nor convenient to use
the same numerical method to look upon periodic solutions of the original non-linear
system and to study the behaviour of the linearized system (around this "rst periodic
solution). Very often, only transitions between stable and unstable areas in the parameter
space are sought for they correspond to periodic orbits.

Usually, the quantitative behaviour of periodic systems is studied using one of these
analytical (perturbation, averaging, point mappings, etc.) or numerical (continuation, etc.)
methods. Clearly, analytical methods have their own limitations essentially due to the
question of small parameters; only parametric excitations of small amplitude may be
determined accurately. As mentioned in reference [24], point mappings require an exact or
an approximate solution of the original non-linear problem. Therefore, each method
belonging to the family of &&analytical methods'' carries its own limitation. Purely numerical
methods are also self-limited in the sense that very often, only transition curves can be
provided when periodic solutions involved in the Floquet theory are considered, or they
face severe drawbacks partly due to time-integration costs and the dimension of both phase
space and parameter space.

In this paper, it is intended to introduce a new Galerkin procedure based on wavelet
series expansions of signals and operators involved in the mathematical setting.
Qualitatively, this method intends to provide a hybrid technique; a numerical method for
the &&skeleton'' of the parametric system is numerically computed using wavelet
representations of integral (resp. di!erential) operators, which is an analytical method
because of the matrix representation of operators. This new method will be used both to
compute periodic (stationary) and non-periodic solutions (transient) of time-varying
systems so that stability analysis could be obtained including quantization of stability. The
topic of the present paper is to restrict the scope of the wavelet-Galerkin procedure to the
computation of transient responses of parametrically excited systems and to the stability
analysis of linear systems. Extensions are nevertheless forthcoming such as for the search of
periodic orbits of linear and also non-linear dynamical systems. Based on a wavelet
analysis, the method inherits interesting properties of wavelets (localization, universal
approximation of very general signals and operators) to furnish the framework of a genuine
multi-resolution approach to study the dynamical response of parametrically excited
systems, eventually including both non-smooth and monitored time-varying components.

The paper is organized as follows: in section 1, the class of parametrically excited systems
considered in the present study is emphasized. Section 2 introduces the wavelet-Galerkin
procedure used to seek the transient response (periodic or not) of general dynamical systems
and numerical experiments are conducted including several single and
multi-degree-of-freedom (d.o.f.) parametrically excited systems. In section 3, the wavelet tool
is used to compute the transition matrix of the Floquet theory and to characterize
stability/instability levels of a single and a two d.o.f. system. Finally, some conclusions and
proposed future work are outlined.
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2. A CLASS OF SECOND ORDER DIFFERENTIAL PROBLEMS WITH TIME-VARYING
COEFFICIENTS

As there is interest in analyzing the stability problem or the dynamical response of
a multi-d.o.f. system of N coupled oscillators, two classes of problems governed by second
order systems of linear di!erential equations with time-varying coe$cients are considered,
depicted using matrix notations as

(P) K
XG (t)#A (t)X0 (t)#F(t)X(t)"G(t)

X(0)"X
0
, X0 (0)"X0

0
C
Dynamical

Response D ,

(1)
(P

s
) DXG (t)#H

1
(t, k)X0 (t)#H

2
(t, k)X(t)"0 [Stability],

where X(t)"[X
i
(t)]1)i)N is the system response, A (t), F(t), H

1
(t, k), H

2
(t, k) are matrices of

¹-periodic time-varying functions, standing, respectively, for gyroscopic terms (eventually
including viscous damping e!ects) and parametric excitations, G(t) is an external forcing,
(X

0
, X0

0
) are the initial conditions and k denotes a set of parameters.

3. THE WAVELET-GALERKIN PROCEDURE

The basic idea of the wavelet-Galerkin procedure consists in searching for solutions of
parametric systems (1) as a wavelet series expansion of ¹-periodic wavelet patterns derived
from a basis of Daubechies wavelet [27] using a Poisson periodization technique [28]. This
approach requires the second order form of systems (1) to be explained in wavelet bases in
order to transform the original system into a matrix problem involving wavelet
representations of integral (resp. di!erential) operators, gyroscopic and parametric
excitations, external forcing and of system response. As the theory of multi-resolution
analysis developed by Mallat [29] is the accurate theoretical framework providing Hilbert
bases of spaces ¸2(R) and ¸2(R/¹Z) [30] (standing for the space of ¹-periodic signals of
"nite energy), the next sections brie#y recall the basic principles of a periodic
multi-resolution analysis and de"ne discrete representations of signals and operators in
wavelet bases. Though functional background and notations are depicted hereafter, the
reader is invited to refer to references [29, 31] for thorough explanations.

3.1. MULTI-RESOLUTION ANALYSIS OF ¸2(R/¹Z)

A multi-resolution analysis (MRA) of a periodic signal X belonging to ¸2 (R/¹Z)
consists in building successive approximations (Xj) 0)j)J of X including details (Xdi )0)i)j

at a resolution 2~j, the scale j"0 and J standing, respectively, for the coarser and the "ner
scales. An MRA of ¸2(R/¹Z) is obtained by folding an MRA of ¸2(R) on itself using the
Poisson summation technique.

As far as mathematics is concerned, an MRA of ¸2(R/¹Z) is de"ned as a sequence (<
j
)j3N

of nested subspaces of ¸2(R/¹Z) spanned by an orthonormal basis of 2j scaling patterns
(u

jk
)0)k(2j (see for instance, periodized Daubechies scaling functions of order 4 in Figure 1)

obtained by combining periodization and dilation/shifting of a single father wavelet
(namely the scaling function u) via the relationship

u
jk

(t)"2j@2 +
r3Z

uA2j A
t

¹

#rB!kB . (2)
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The approximation spaces <
j
check the following properties:

(Closure) Y
j
<
j
"M0N, Z

j
<
j
"¸2(R/¹Z), (3)

(Nested spaces) <
j
-<

j`1
-¸2(R/¹Z), (4)

(Shifting) f3<
j
8 f A )!

k¹

2j B3<j, (5)

(Dilation) f3<
j
8 f (2 ) )3<

j`1
, (6)

(Orthonormal basis) <
j
"Span Mu

jk
N0)k(2j, (7)

(Coarse space) <
0
"Span M1N. (8)

In order to measure the di!erence between two successive approximations Xj and Xj`1 of
signal X, respectively, in <

j
and <

j`1
, detail spaces =

j
are introduced as the orthogonal

supplementary spaces of <
j
in <

j`1
depicted by

<
j`1

"<
j

>

==
j
. (9)

Similarly, spaces =
j

are spanned by an orthonormal basis of dimension 2j of wavelet
patterns (t

jk
)0)k(2j (see, for instance, periodized Daubechies wavelets of order 4 in

Figure 2) obtained when combining periodization and dilation/shifting of a single mother



Figure 2. Periodized Daubechies wavelets t
00

, t
10

, t
21

of order 4.

850 S. PERNOT AND C.-H. LAMARQUE
wavelet t via the relationship

t
jk

(t)"2j@2 +
r3Z

tA2jA
t

¹

#rB!kB . (10)

Hence, similar properties hold for spaces =
j

(Superposition of details) ¸2(R/¹Z)"<
0

>

=
j3Z

=
j
, (11)

(Re"nement) <
j
"<

0

>

=
0)i)j

=
i
, (12)

(Shifting) f3=
j
8 f A )!

k¹

2j B3=j
, (13)

(Dilation) f3=
j
8 f (2 ))3=

j`1
, (14)

(Orthonormal basis) =
j
"Span Mt

jk
N0)k(2j . (15)

In practice, the construction of the mother wavelet t derives from the scaling function
u which also derives from the determination of admissible "ltering functions [27, 31].

Associating the common inner product S f, gT"1/¹ :T
0

f (t) g(t) dt to ¸2(R/¹Z), a signal
approximation XJ of X at resolution J may indi!erently be approximated with the scaling
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or with the wavelet series expansions:

X(t)KXJ(t)"SJ(X) )uJ(t) (16)

"

2J~1
+
k/0

SJk (X)u
Jk

(t) (17)

"S0(X) ) 1#
J~1
+
j/0

Dj(X) )wj (t) (18)

"S00(X)#
J~1
+
j/0

2j~1
+
k/0

Djk(X)t
jk

(t), (19)

where

f uJ(t)"[u
Jk

(t)]T0)k(2J is the collection of scaling function patterns,
f wj(t)"[t

jk
(t)]T0)k(2j is the collection of wavelet patterns,

f SJ(X)"[(S
1
Jk(X))0)k(2J 2 (S

N
Jk(X))0)k(2J]T is the arranged sequence of scaling

coe$cients of X(t) at resolution J,
f Dj(X)"[(Djk

1
(X))0)k(2j 2 (Djk

N
(X))0)k(2j]T is the arranged sequence of wavelet

coe$cients of X(t) at scale j

involving the inner products Sjk(X)"SX, u
jk
T
L2(R/¹Z) and Djk(X)"SX, t

jk
T
¸2(R/¹Z) which,

respectively, refer to the scaling coe$cients and the wavelet coe$cients of signal X.
Practically speaking, time-scale analysis of a periodic signal may easily be performed

using fast tree algorithms [29] permitting an easy extraction or cancellation of details
channels in a (monitored) signal X living near resolution scales j3[0, J].

The down-scaling scheme (detailed in the periodical case [27, pp. 934}938; 28, pp. 55}59]
and depicted in Figure 3) consists of successively convoluting scaling representation SJ(X)
of a signal X with a low-pass "lter H

j
and a band-pass "lter G

j
and then down-sampling the

coe$cients obtained by a factor of two (convolution and down-sampling calculations being
performed in the Fourier space). By the end, scaling coe$cients Sj(X) and wavelet coe$cients
Dj(X) are recursively computed from the coe$cients Sj`1(X) at scale ( j#1) with
a complexity of order O(N). Moreover, this transformation is reversible and the lifting scheme
consists of similar convolutions and over-sampling operations. Finest scaling coe$cients
SJ(X) are computed using adaptive numerical integration procedures [32, 33] speci"cally
developed in the framework of periodized compactly supported Daubechies wavelets.

3.2. TIME-SCALE REPRESENTATION OF SIGNAL RESPONSE

Considering an N d.o.f.s system, the time-scale representation of vector X(t) derives
directly from the previous case and is expressed in the harmonic wavelet basis by

X(t)KXJ(t)"UJ(t) )SJ(X) (20)
Figure 3. Pyramidal decomposition tree of a signal in periodic wavelets.
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"

2J~1
+
k/0

SJk(X) )u
Jk

(t) (21)

"U0(t) )S0(X)#
J~1
+
j/0

Wj(t) )Dj(X) (22)

"S0(X)#
J~1
+
j/0

2j~1
+
k/0

Djk(X) )t
jk

(t), (23)

where

f UJ(t)"I
N

? [uJ(t)]T is a tensor product of scaling function patterns,
f WJ(t)"I

N
? [wJ(t)]T is a tensor product of wavelet patterns,

f SJ(X)"[(S
1
Jk(X))0)k(2J2 (S

N
Jk(X))0)k(2J]T is the vertical concatenation of scaling

coe$cients sequences of X(t) at resolution J,
f Dj(X)"[(D

1
jk(X))0)k(2j 2 (D

N
jk(X))0)k(2j]T is the vertical concatenation of wavelet

coe$cients sequence at scale j.

3.3. TIME-SCALE REPRESENTATION OF OPERATORS

Consider an operator T belonging to either L(¸2(R/¹Z), ¸2(R)) or L(¸2(R), ¸2(R))
denoting the spaces of continuous linear mappings, respectively, from ¸2(R/¹Z) onto
¸2(R) and from ¸2(R) onto ¸2(R). As the intention is to expand operator T in the
multi-resolution spaces (<

j
)i3N , the wavelet approximation operator T

J
:<

J
P<

J
of T is

de"ned at the "ner resolution J and depicted hereafter as

T K
¸2(R/¹Z) or ¸2(R)

u

P¸2(R),

Pv"Tu,

+ (24)

T
J K
<
J
P<

J
,

u
J
P v

J
"T

J
u
J
"(P

J
TP

J
)u

J
.

Introducing orthogonal projectors

P
j
:¸2A

R
¹ZB or ¸2(R)P<

j
, (25)

Q
j
:¸2A

R
¹ZB or ¸2(R)P=

j
, (26)

respectively, onto <
j

and =
j
, the non-standard form of operator TKT

J
"P

J
TP

J
is

expressed as depicted by Beylkin [34, 35]. Recursively equating T
J
"P

J
TP

J
"

(P
J~1

#Q
J~1

)T(P
J~1

#Q
J~1

), the formal telescopic series is

TKT
J
"T

0
#

J~1
+
j/0

(G
j
#A

j
#B

j
) (27)
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and the following recursive de"nition of T

T
j
"C

A
j~1

G
j~1

B
j~1

T
j~1
D , (28)

where

G
j
"P

j
TQ

j
:=

j
P<

j
, (29)

A
j
"Q

j
TQ

j
:=

j
P=

j
, (30)

B
j
"Q

j
TP

j
:<

j
P=

j
(31)

are scale-to-scale operator contributions.
Hence, the operator T may be approximated using its non-standard representation

TKT
J
"MMG

j
, A

j
, B

j
N0)j)J!1,T0

N (32)

in the wavelet basis

Mu( )!k)u( )!l ), Mt
jk

u
jl
, t

jk
t
jl
, u

jk
t
jl
Nj*0N(k, l)3Z2 (33)

(resp. M1, Mt
jk

u
jl
, t

jk
t
jl
, u

jk
t
jl
N j*0

0)k, l(2jN) (34)

of ¸2(R2) (resp. ¸2([R/¹Z]2)). This operator representation, depicted in reference [35]
which nearly uncouples all scaling interactions, is characterized by an optimally minimized
band structure. Contrary to the standard form, the non-standard form permits an e$cient
reduction of operators to a sparse narrowbanded form with the availability of O(N) inverse
matrix algorithms. It also exhibits a built-in pre-conditioner featuring power of two
multipliers ensuring accurate inversions of matrix systems. Hence, using a well-localized
wavelet analysis has multiple advantages against an &&analytical'' Fourier analysis which
results in full and badly conditioned matrix systems. The reader may refer to reference [35]
for further details.

Time-scale representation SJ(v
J
) of signal approximation v

J
"T

J
u
J

may be computed
from SJ(u

J
) of signal approximation u

J
using matrix representation T J(T) of T

J
when

equating

SJ (v
J
)"T J )SJ (u

J
), (35)

which involves the inner products

T J"ST(u
Jl
), u

Jk
T0)k,l(2J . (36)

Similar expressions also hold for scale-to-scale components G
j
, A

j
, B

j
as depicted in

equations (37)}(39) and are

C j"ST (t
jl
),u

jk
T0)k,l(2j , (37)

A j"ST (t
jl
),t

jk
T0)k,l(2j , (38)

B j"ST (u
jl
),t

jk
T0)k,l(2j . (39)



Figure 4. Pyramidal decomposition tree of an operator in periodic wavelets.
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As in section 3.1, fast tree algorithms illustrated in Figure 4 are also available to successively
compute time-scale representation T j of T

j
from the "ner matrix approximation T J of

T
J

with a complexity of order O(N). Matrix representation T j is successively convoluted
with a low-pass/low-pass "lter H

j
?H

j
to obtain matrix T j~1 of T

j~1
at scale j!1, with

a band-pass/low-pass "lter H
j
?G

j
to obtain matrix C j~1 of G

j~1
, with a band-pass/band-

pass "lter G
j
?G

j
to obtain matrix Aj~1 of A

j~1
, with a low-pass/band-pass "lter G

j
?H

j
to obtain matrix Bj~1 ofB

j~1
and then downsampled by a factor of two. The lifting scheme,

which consist of reconstructing the "ner approximation T J from the collection M(Cj, Aj,
BjN0)j(J , T 0N, is based on the same principles. Adaptive numerical integration schemes
were designed to compute the matrix representation of a few basic operators e$ciently at
the "nest scale J.
Several features that are thoroughly developed in reference [36] consist of

f building wavelet-oriented quadrature formulae to compute e$ciently truncated
integrals of the type :b

a
f (t)u (t) dt where (a, b) are dyadic rationals ranging within the

support of scaling function u, f being any (su$ciently regular) signal to be analyzed,
f linking inner products featuring periodized scaling functions (in ¸2(R/¹Z)) to inner

products involving scaling functions of ¸2(R),
f using fast tree algorithms to compute inner products featuring dilated/shifted scaling

patterns,
f computing the wavelet approximation TJ"ST(u

Jl
), u

Jk
T0)k,l(2J .

The next section brie#y describes the structure of the wavelet representation of two generic
operators involved in the wavelet-Galerkin procedure, namely the product operator T

f
and

the integral operator T: given by

T
f
:;P< / <(t)"f (t);(t), (40)

T: :;P< / <(t)"P
t

0

;(q) dq. (41)

3.3.1. ¹ime-scale representation of the product operator

Given a smooth ¹-periodic signal f3¸2(R/¹Z), the self-adjoint operator T
f

is de"ned
by

T
f K

¸2 ( R

TZ)

u

P¸2 ( R

TZ ),

Pv"Tu"fu .
(42)
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Therefore, its wavelet counterpart TJ
f

at scale J requires the computation of

T J
f

(k, l )"
1

¹ P
T

0

f (q)u
Jk

(q)u
Jl

(q) dq (43)

"P
Nsup

Ninf

f A
¹

2J
(x#k!N

inf
)B u(x!(l!k))u (x) dx 0)k)l(2J, (44)

where [N
inf

, N
sup

] is the support of the scaling function u.
Equation (44) is obtained by assuming that the criterion

∀t3[0, ¹] u
J0

(t)"2J@2uA2J
t

¹

#N
infB (45)

is valid for compactly supported Daubechies wavelets of order N [27] which only hold
when scales J*J

i
"maxj3N M j/2j*N

sup
!N

inf
N are checked. The matrix representation

of T J
f

has a sparse symmetric band structure as displayed in Figure 5 and whose bandwidth
is related to the support of the analyzing wavelet. As product operators are required to
model gyroscopic or parametric components in problems (1), derived following the
linearization of a smooth non-linear dynamical system in the neighbourhood of a periodic
solution, the wavelet representation was straightforwardly extended to cope with monitored
multiplicative signals f approximated by wavelet series expansions at resolution J.

3.3.2. ¹ime-scale representation of the integral operator

As the wavelet-Galerkin procedure requires integral forms of signals to be computed, the
"rst integral operator T: is de"ned as

T
f

¸2 ( R

TZ)

u

P¸2([0,¹]),

Pv"Tu/v(t)"1
T P

t

0

u (q) dq .

(46)
Figure 5. Time-scale representation of the product operator T
f
.
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It is obvious that the periodicity of the image signal v is lost when applying T: to signal u.
Despite a small Gibbs phenomenon eventually occurring near the edges, the harmonic
wavelet representation is assumed to capture accurately the main features of operator
T: within the frame window [0, ¹]. Yet this problem will soon vanish when considering
relatively large resolution scales J.

Introducing HJ(t)"1/¹ : t
0
u
J0

(q) dq as the "rst integrals of dilated scaling functions u
J0

,
few properties hold for HJ and from equations (47) and (48)

HJ(t)"2~J@2K
H (2J t

T
#N

inf
)

H(N
sup

)

if 0) t
T
(2~J (N

sup
!N

inf
),

if 2~J(N
sup

!N
inf

)) t
T
(1

(47)

and

∀t3[0, ¹] K
HJ(t!¹)"HJ(t)!HJ(2~J¹(N

sup
!N

inf
)),

HJ(t#¹)"HJ(t)#HJ(2~J¹(N
sup

!N
inf

)),
(48)

where H(x)":x
Ninf

u (u) du is given by expressions detailed in reference [37].
Matrix representation TJ: of approximation TJ: at scale J

TJ: (k, l )"
1

¹2 P
T

0
A P

t

0

u
Jl

(q) dqBu
Jk

(t) dt (49)

is then expressed in terms of HJ(t) when assuming J*J
i
and "nally reduces to equations

2JTJ: (k, l )"H (2J!k#N
inf

)#H (N
sup

#k!1)!H(2J!1#N
inf

)

!P
Nsup`k~1

Ninf

H(x#l!k)u (x) dx if 0)1!k)(N
sup

!N
inf

) (50)

"0 if (N
sup

!N
inf

))1!k and 1)2J!(N
sup

!N
inf

) (51)

"H(2J!k#N
inf

)!H(2J!1#N
inf

) if (N
sup

!N
inf

))1!k)2J

!(N
sup

!N
inf

) and 1)2J!(N
sup

!N
inf

) (52)

"H(2J!k#N
inf

)!H(2J!1#N
inf

)!P
Nsup

2J`k~1`Ninf

]H(x#1!k!2J)u(x) dx if 2J!(N
sup

!N
inf

)(1!k (53)

"H(2J!k#N
inf

)!P
Nsup

Ninf`k~1

H(x#1!k)u(x) dx

if 0(k!1((N
sup

!N
inf

) and 1)2J!(N
sup

!N
inf

) (54)

"H(2J!k#N
inf

)!H(2J!1#N
inf

)#H(N
sup

)

!P
Nsup

Ninf`k~1

H(x#l!k)u(x) dx
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if 0(k!1((N
sup

!N
inf

) and 1'2J!(N
sup

!N
inf

) (55)

"1 if k!1*(N
sup

!N
inf

) and k)2J!(N
sup

!N
inf

) (56)

"H(2J!k#N
inf

) if (N
sup

!N
inf

))k!1(2J!(N
sup

!N
inf

)

and k'2J!(N
sup

!N
inf

) (57)

"H(2J!k#N
inf

)#H(N
sup

!2J#k!1)

!P
Nsup~2J`k~1

Ninf

H(x#2J#l!k)u (x) dx

if k!1*2J!(N
sup

!N
inf

). (58)

Summing up, the matrix representation of TJ: highlights a sparse structure whose
storage is similar to an arrow matrix as displayed in Figure 6. Two constant areas of values,
respectively, 2~J and 0 may be seen in Figure 6. Two non-trivial triangular areas also
appear in the lower and upper corners because of the periodic analysis.

3.3.3. ¹ime-scale representation of matrix of operators

Considering an N by N matrix T of operators (T
ij
)1)i, j)N , its time-scale representation

TJ derives directly from the previous section using a tensor product and is expressed in the
harmonic wavelet basis of <

J
?2?<

J
by

TJ"[`
(N,N)

?T
ij
J]1)i, j)N , (59)

where `
(N,N)

is the N]N unit matrix.
Figure 6. Time-scale representation of the integral operator T:.



858 S. PERNOT AND C.-H. LAMARQUE
3.4. THE WAVELET-GALERKIN PROBLEM

Integrating system (P) between 0 and t, yields the 2N d.o.f. integral problem P(>)
involving the time response and its derivative Y"[X X0 ]T"[Y

1
Y
2
]T solution of the "rst

integral problem

P(>)

Y
1
(t)!P

t

0

Y
2
(q) dq"X

0

Y
2
(t)#P

t

0

A(q) )Y
2
(q) dq#P

t

0

F (q) )Y
1
(q) dq"X0

0
#P

t

0

G(q) dq.
(60)

Next, de"ning operators

T: : UPV / V(t)"P
t

0

U(q) dq,

T: TA
: UPV / V(t)"P

t

0

A(q) )U(q) dq, (61)

T: TF
: UPV / V(t)"P

t

0

F(q) )U(q) dq,

where T:"I
(N,N)

?T: , T
A
"[`

(N,N)
?T

Aij
]1)i, j)N and T

F
"[`

(N,N)
?T

Fij
]1)i, j)N are,

respectively, a vector of the integral operator and matrices of product operators, the
wavelet-Galerkin problem is built using time-scale representations of T: , T: TA

and T: TF

at the "ner resolution scale J. Transient responses of system P(>) are derived directly using
a wavelet condensation of equation (60) and their related scaling representation SJ(Y) may
be found when solving the equivalent matrix problem

PJ(>)

SJ(Y
1
)![I

(N,N)
?TJ: ] ) SJ(Y

2
)"SJ(X

0
),

SJ(Y
2
)#[`

(N,N)
? (TJ: TJ

Aij
)]

ij
)SJ(Y

2
)

#[`
(N,N)

? (TJ: TJ
Fij

)] )SJ (Y
1
)"[I

(N,N)
? TJ: ] ) SJ(G)#SJ(X0

0
) .

(62)

Time-scale representations SJ(X
0
) and SJ(X0

0
) bound to initial conditions (X

0
, X0

0
) are

computed using a property of periodic wavelet analysis: space <
0

is spanned by constant
functions. Consequently, the wavelet series S0(X

0
) and S0(X0

0
) at scale J"0 are equal to the

initial conditions (X
0
,X0

0
) considering scaling approximations in <

0
. Time-scale

representations at scale J straight forwardly derive from the case J"0 using the wavelet
lifting scheme depicted in section 3.1. Interesting features related to the inner structure of
problem PJ(>) may be pointed out: it is su$cient to pre-compute (once and for all) a few
elementary block operators whose non-standard form in wavelet bases is sparse. Then, time
responses may be obtained by solving the (N2J, N2J) equivalent matrix system, which only
requires a gathering of block operators, using a standard LU solver or a fast LU solver of
order O(N) available for wavelet non-standard forms as depicted in reference [38] and
eventually taking into account a wavelet optimized pre-conditioner. This wavelet-Galerkin
procedure permits multi-initial conditions inputs to proceed at the same time using a single
LU decomposition. Indeed, the wavelet-Galerkin problem bound to any (non-smooth)
gyroscopic (resp. parametric) components A(t) (resp. F(t)) may easily be built thanks to



Figure 7. Simulation no. 1: phase portrait [x/ExE, xR /ExR E]; e e e e, RK 45; ==, wavelets.

Figure 8. Simulation no. 2: parametric excitation fe (t).
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Figure 9. Simulation no. 2: wavelet pyramidal decomposition of fe(t) in terms of k/2J and scales a"log
2
(2J/m),

m3[1, 2J~1].

Figure 10. Simulation no. 2: phase portrait [x/ExE, xR /ExR E]; e e e e, RK 45; ==, wavelets.
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e$cient computations of non-standard form of product operators involving monitored
signals. Summing up, these features demonstrate that the wavelet procedure is both
a numerical and an analytical method allowing the vibration of dynamical systems to be
investigated.

In the following section, a few samples including one d.o.f. or multi-d.o.f. systems are
investigated to demonstrate the reliability of the proposed wavelet-Galerkin procedure.

3.5. STUDY OF A CLASS OF SINGLE-(s.d.o.f.) SYSTEMS

The wavelet-Galerkin method is applied to search the transient response (x, xR ) of one
d.o.f. parametrically excited systems involving a damping factor a and whose dynamics are
governed by

P
1

xK (t)#axR #f (t)x(t)"g(t),

x(0)"x
0
, xR (0)"xR

0
, f (t)"u2

0
#e fe(t),

a"10~1

2n , u
0
"1 rad/s, e"1.

(63)

Numerical simulations introduced according to several sets of parametric excitations f (t),
initial conditions and approximation scales J and gathered in Table 1 aim to emphasize the
behaviour of the wavelet-Galerkin procedure on theoretical examples. Phase portraits of
the dynamic responses are compared with those computed using a standard Runge}Kutta
RK45 of order 4}5 integration scheme.

Simulation No. 1 involving a cosine parametric excitation aims to show that the wavelet
method rapidly converges when increasing the resolution scale J by comparison with the
reference solution computed with the Runge}Kutta scheme. The phase portrait displayed in
Figure 7 in normalized co-ordinates [x/ExE, xR /ExR E] according to several resolution scales
J ranging between 3 (scaling series with eight patterns) and 7 (scaling series with 128
patterns) con"rms the rapid convergence of solutions (xJ , xR J) even for coarse scales.
However, a few side e!ects (large oscillations) near the time-window edges may be seen and
are due to the periodization of non-periodic signals. That is why it is more convenient to
speak of periodized initial conditions (x

0
, xR

0
) rather than actual initial conditions.

Moreover, these imperfections are reduced to a jump at the extremities of time interval (in
order to get an arti"cial periodic signal from a non-periodic signal) when the approximation
scale J becomes "ner. In simulation no. 2, the sine parametric excitation is perturbed by
a non-smooth (high frequency) accident as displayed in Figure 8. The wavelet pyramidal
TABLE 1

Numerical simulations

Excitation f (t) Figures J fe (t) g(t) x
0

xR
0

Sinusoid 7 3}8 cos(2nt) e cos2(2nt)!2an sin (2nt) 0)1 0)1
#[u2

0
!4n2] cos(2nt)

Perturbed sinusoid 8}10 10 100 if Dt!1
4
D)2~10 cos(2nt) 0)5 1)0

sin (16n t) if not
Transition 11}13 7 cos (8nt) if t(1

2
cos (2nt) 1)0 0)0

cos(36nt) if t'1
2

Noisy sinusoid 14}16 7 x(t)"uJ(t) ) SJ(x) cos (2nt) 1)0 0)0



Figure 11. Simulation no. 3: parametric excitation fe(t)

Figure 12. Simulation no. 3: wavelet pyramidal decomposition of fe(t) in terms of k/2J and scales a"log
2
(2J/m),

m3[1, 2J~1].

862 S. PERNOT AND C.-H. LAMARQUE
decomposition of fu (t) in Figure 9 demonstrates that the accident occurring near t"1
4

is
very irregular with detailed components living up to the high-resolution scales. The
phase portrait depicted in Figure 10 shows that results obtained with the wavelet method



Figure 14. Simulation no. 4: parametric excitation fe(t)

Figure 13. Simulation no. 3: diagram [x/ExE, xR /ExR E]; e e e e, RK 45; ==, wavelets.

A WAVELET-GALERKIN PROCEDURE 863



Figure 15. Simulation no. 4: wavelet pyramidal decomposition of fe(t) in terms of k/2J and scales a"log
2
(2J/m),

m3[1, 2J~1].

Figure 16. Simulation no. 4: diagram [x/ExE, xR /ExR E]; e e e e, RK 45; ==, wavelets.
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are in good agreement with the reference solution computed with a Runge}Kutta
procedure.

In simulation no. 3, the parametric excitation is taken as a transition between a low and
a high frequency cosine excitations (in Figure 11). The two characteristic frequencies may be
distinguished in Figure 12 by looking for areas in which dominant wavelet coe$cients
are concentrated, the "rst one being near scale J"4 before the transition takes place and
the second higher frequency being near scale J"6 after the transition. The sudden change
in driving frequency may clearly be identi"ed on the phase portrait depicted in Figure 13
with high frequency oscillations appearing after the transition.

Simulation No. 4 dealing with a noisy cosine parametric excitation (see Figures 14}16)
shows that the wavelet method can accurately process irregular parametrically excited
systems characterized by a continuous-band spectrum.

3.6. STUDY OF A MULTI-(m.d.o.f.) SYSTEM

In order to demonstrate that the wavelet procedure accurately encounters problems
involving a relatively large number of d.o.f., the study now focuses on the following 10 d.o.f.
parametrically excited system de"ned by

P
10

XG#[a
i
d
ij
]
i,j

X0 #[u
i
u

j
#e

j
cos (X

j
t)]

i,j
X"G(t),

X(0)"[1]T1)i)N , X0 (0)"[a2
i
!X2

i
]T1)i)N,

a
i
"10~1

2n , u
i
"J21~i, X

i
"2ni, e

i
"2~i,

G
i
(t)"eai t [a

i
X

i
sin (X

i
t)

#

N
+
j/1

(u
i
u

j
!X2

i
d
ij
) cos (X

j
t)

#

N
+
j/1

e
j
cos2 (X

j
t)]

(64)

with known exponentially damped cosine responses

X
i
(t)"exp (a

i
t) cos (X

i
t) ∀i3[1, N]. (65)

Figures 17 and 18 display the time responses and the derivatives of some components.
Their corresponding phase portraits are illustrated in Figures 19 and 20. Despite
a non-periodic problem being solved using a periodic wavelet analysis, the solutions still
remain captured within the time window considered by comparison with a Runge}Kutta
integration procedure. Only a few oscillations may be distinguished near the edges because
the periodic analysis bends the solutions to lock them on a periodic cycle.

3.7. CONCLUDING REMARKS

Numerical experiments highlight reliable behaviour of the wavelet-Galerkin procedure to
investigate the vibrations of parametrically excited systems and more generally systems
with periodic time-varying coe$cients. Though a light Gibbs phenomenon occurs near the
edges, experiments demonstrate a rapid convergence of the approximations towards the
reference Runge}Kutta solution, the accuracy being similar to a Runge}Kutta scheme.



Figure 18. Velocity responses [XQ
n
(t)]

n/1,2,3
; e e e e, RK 45; ==, wavelets.

Figure 17. Time responses [X
n
(t)]

n/1,2,3
; e e e e, RK 45; ==, wavelets.
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Figure 19. Phase portraits [X
n
/EX

n
E, XQ

n
/EXQ

n
E]

n/1,2
; e e e e, RK 45; ==, wavelets.

Figure 20. Phase portraits [X
n
/EX

n
E, XQ

n
/EXQ

n
E]

n/4,6,10
; e e e e, RK 45; ==, wavelets.
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Interesting properties of the wavelet procedure are pointed out: it overcomes problems
involving either smooth or very irregular parametric excitations fe (t) as displayed in Figures
8, 11 and 14. Pyramidal wavelet decompositions of signals such as a sinusoid perturbed by
a high frequency accident (Figure 9), a transition between a low frequency oscillation and
a relatively high frequency oscillation (Figure 12) and an oscillation perturbed by
a widespread spectrum noise (Figure 15), are many revealing instances which con"rm that
the wavelet-Galerkin procedure is able to process experimentally monitored excitations
(external or parametric excitations) characterized by a continuous-band spectrum.
Moreover, the method appears to be e$cient in solving problems involving a relatively
large number of d.o.f.: temporal responses (Figures 17 and 18) and phase portraits (Figures
19 and 20) of dynamic components of equation (64) emphasize the reliable behaviour,
compared with the Runge}Kutta RK45 simulations.
Intrinsic properties may be emphasized:

f the wavelet-Galerkin associated problem may be easily built because it essentially
reduces to a pre-computation of the time-scale representations of basic linear operators
and a gathering of matrix systems.

f the wavelet method is a multi resolution approach: fast tree algorithms are available to
seek "ner/coarser wavelet representations of signals/operators,

f the wavelet method gives a functional representation of solutions.

As intrinsic properties highlight both a numerical and an analytical procedure, the
wavelet-Galerkin procedure is used in the following section to compute e$ciently the
Floquet transition matrix involved in a standard stability analysis.

4. STABILITY ANALYSIS: AN EFFICIENT WAVELET PROCEDURE TO COMPUTE
THE FLOQUET TRANSITION MATRIX

Focusing on the free oscillation problem (P
s
) given by equation (1) and referred to later,

(P
s
) DX0 (t)#H

1
(t, k)X0 (t)#H

2
(t, k)X(t)"0 [Stability] (66)

involving matrices H
1
(t, k) of H

2
(t, k) of ¹-periodic time-varying functions depending on

a set of parameters k, the following question is raised: in which parameter area is the
stability of periodic system P

s
guaranteed? Answering that question is relatively

straightforward using the theoretical framework of the Floquet theory in reference [1] and
brie#y referred here to introduce the notations. The general case could be treated, but very
often, H

1
(t, k) is a constant matrix (damping) so that a new variable can be easily introduced

(see Liouville's method in reference [2]) X(t)"exp (!(t/2)H
1
)X0 (t) in order to obtain

X3G #Cexp A!
t

2
H

1BH
2
(t, k) expA

t

2
H

1B!
H2

1
4 D X3 (t)"0. (67)

This last equation explains why the peculiar case

XG (t)#H(t, k)X(t)"0 (68)

is expecially interesting. This latter case is now the suitable framework considered in the
present study.
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Condensing time response of P
s

and its derivative into Y"[X X0 ]T"[Y
1

Y
2
]T, the

second order di!erential problem P
s

is transformed in a (2N, 2N) "rst order equivalent
system

P
s
(>) K C

Y0
1

Y0
2
D#C

0
(N,N)

H (t, k)

!I
(N,N)

0
(N,N)

D )C
Y
1

Y
2
D"0. (69)

The Cauchy theorem claims a fundamental basis of 2N solutions f (t)"[f
1
,2, f

2N
]T of

dimension 2N exits so that equation

[f(t)]"C
0

H(t, k)

!I
0D ) [f(t)] (70)

is con"rmed.
At the same time, f (t#¹ ) is also shown to be a fundamental set of solutions using the

¹-periodicity of H(t, k). Consequently, the Floquet theory exhibits a Floquet transition
matrix F con"rming the relationship

[f (t#¹ )]"[F] ) [f (t)]. (71)

Hence, it is assumed without restricting the generality that a diagonal form of equation (71)
may be computed. Introducing the transformation f(t)"PV(t), it yields

V (t#¹)"[P~1FP] )V(t)"

k
1

0

}

0 k
2N

V (t), (72)

where (k
i
) 1)i)2N are the eigenvalues of the Floquet transition matrix F. De"ning the

Floquet exponents as c
i
"(1/¹ ) ln (k

i
), the Floquet theory "nally exhibits normal solutions

of the form

X
i
(t)"exp (c

i
t)/

i
(t) ∀1)i)2N (73)

with /
i
(t)"/

i
(t#¹ ) and c

i
, respectively, standing for periodic solutions and Floquet

exponents quantifying stability or instability levels of the system. The following stability
criteria are inferred from equation (72):

sup
1)i)2N

Re (c
i
)(0Nstable system,

sup
1)i)2N

Re (c
i
)'0Nunstable system, (74)

sup
1)i)2N

Re (c
i
)"0Ncritical case.

Summing up, the stability analysis mainly consists of building the Floquet transition
matrix F and searching for solutions of equation (70) combined with a set of 2N
independent initial conditions f(0)"I

(N,N)
for instance. Using equation (71), the Floquet

transition matrix will be identi"ed thanks to the relation F"f(¹ ). Though very robust on
the mathematical point of view, the Floquet theory encounters many drawbacks practically.
It is often very di$cult to obtain the Floquet matrix transition without expensive
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computations and in one pass. Here, bene"t is made of the wavelet-Galerkin procedure
previously described to compute e$ciently the Floquet transition matrix in one pass and
consequently state according to the stability of the system.

Next, the wavelet procedure is de"ned to build stability diagrams featuring both
qualitative (stability/instability) and quantitative information (strength of
stability/instability). Having pre-computed the wavelet &&skeleton'' of problem P

s
:

f solve P
s
with 2N independent [X

0
, X0

0
] using the wavelet-Galerkin solver,

f compute the Floquet transition matrix in one pass,
f compute the Floquet exponent whose real part is the highest,

s state according to the stability criteria: Re(c)(0, Re(c)'0, Re(c)"0,
s estimate the strength of stability/instability: maximum value of Re(c),

f repeat the procedure for each set k ranging in the parameter domain.

This procedure enables a straightforward and very e$cient technique to be used to build
stability diagrams displaying the isovalue curves of the maximum of the real part of Floquet
exponents taking full advantage of the interesting properties of the wavelet-Galerkin solver.
It also allows transition curves (qualitative information) to be extracted and the strength of
stability/instability (quantitative information) to be measured. The method is used to
compute the stability diagram of a Mathieu oscillator and a system of two coupled
oscillators with two parameters depicted hereafter.

4.1. STABILITY ANALYSIS OF A s.d.o.f. SYSTEM

The wavelet method is applied (for example) to the Mathieu oscillator [1] depicted by

xK (t)#(d#2e cos (2t))x(t)"0, (75)

where [d, e] are two intrinsic parameters. On the stability diagram (Figure 21) illustrating
a normalized value of the dominant Floquet exponent computed at a resolution scale J"8
(vertically) in terms of parameters d and e in horizontal directions, it is noticeable that the
transition curves point towards the values (d"n2)

n3Z which is a well-known result [1]. Yet
portions of high instability may be distinguished in the upper left corner of Figure 21 with
levels of c greater than 10. Moreover, the wavelet method allows the strength of
stability/instability to be measured thanks to the level of Floquet exponents. In order to
demonstrate that the approximation order J has little in#uence on the shape of stability
diagrams as soon as a convenient scale J is used, stability diagrams of the Mathieu
oscillator (75) are introduced according to scales J ranging between 3 and 8 as displayed in
Figures 21}24. In the present study, convergence is numerically obtained for J*4
corresponding to an analyzing basis including 16 wavelet patterns.

4.2. STABILITY ANALYSIS OF A TWO d.o.f. SYSTEM

Considering the two d.o.f. system whose motion is governed by equations

xK
1
#a

1
xR
1
#[d#2e cos (2t)]x

1
#2e cos (2t)x

2
"0,

xK
2
#a

2
xR
2
#2e cos (2t)x

1
#[d#2e cos (2t)]x

2
"0,

(76)

involving the parameters [d, e] and the viscous damping factors a
1
"a

2
"0)25, the

corresponding stability diagram is displayed in Figure 25. This diagram was obtained



Figure 21. Stability diagram EcE"F[d, e] of the 1 d.o.f. system with a resolution scale J"3.

Figure 22. Stability diagram EcE"F[d, e] of the 1 d.o.f. system with a resolution scale J"4.
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Figure 23. Stability diagram EcE"F[d, e] of the 1 d.o.f. system with a resolution scale J"6.

Figure 24. Stability diagram EcE"F[d, e] of the 1 d.o.f. system with a resolution scale J"8.
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Figure 25. Stability diagram EcE"F[d, e] of the 2 d.o.f. system with a resolution scale J"6.
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without any major di$culty as in the one d.o.f. case. Compared with the stability diagrams
of the single d.o.f. Mathieu oscillator (75), several stable band areas are noticeable (for
instance, in the neighbourhood of dK9). Independently of the damping that shifts the
stability diagram up, it can be claimed that the presence of two oscillators has a stabilizing
e!ect on both and consequently plays a great part in the stability of the whole system (76) by
spreading the stable areas, as expected.

5. CONCLUSION

A new wavelet-Galerkin procedure was introduced to investigate transient vibration and
stability of parametrically excited systems and more generally time-periodic systems. The
multi-scale method proved to be reliable for systems involving irregular excitations, with
a relatively high number of d.o.f. by comparison with a standard integration procedure of
Runge}Kutta type, as illustrated in the academic instances. Having stored time-scale
representation of a few elementary operators in wavelet bases, stability diagrams can easily
be produced exhibiting the transition curves and the Floquet exponents giving
a quantization of stability/instability levels can be estimated.

The new wavelet-based procedure is very promising and permits the linearized stability of
non-linear systems to be investigated. A brief comparison may be established with some
other classical methods: among other existing numerical or analytical methods such as
continuation, multiple scales, normal form or Chebyshev}Galerkin, the wavelet-Galerkin
procedure may be viewed both as a numerical and an analytical method. On the one hand,
numerical methods based on a continuation procedure cannot provide a quantization of
stability when the problem of concern is to compute the transitions between stable and
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unstable areas (bound to periodic solutions). These methods are computationally very
time-consuming for they require calculations for each set of parameters and time-accidents
in solutions to be captured using small time steps for localized sti!ness. On the other hand,
analytical methods only proved their e$ciency for a few degrees of freedom (1, 2, perhaps 3),
practically speaking. They provide interesting algebraic equations, but still they remain
only approximated methods when dealing with problems involving strong non-linearities of
strong parametric excitations. Consequently, it is often impossible to quantify error levels
that might be large. The wavelet-Galerkin method is conceptually close to the
Chebyschev-Galerkinmethod described by Sinha in reference [23] but it takes advantage of
the wavelet properties (fairly good time}frequency localization, fast trees algorithms,
non-standard form and compression of operators in wavelet bases) that are not available
using polynomial bases. Moreover, because the wavelet method can provide both transient
and periodic solutions using the same tools, quantization of stability is worthy and
relatively straightforward.

In the present study, only transient responses were investigated using the
wavelet-Galerkin solver. A further paper in progress (a wavelet-based procedure to "nd
periodic orbits of parametrically excited systems' by C. H. Lamarque and S. Pernot), will
focus on the search of (stationary) periodic responses of system P and their corresponding
periodic initial conditions (Xper

0
, X0 per

0
). At the present time, interesting multi-scale properties

have not been fully exploited and future prospects concern the development of a new
wavelet-balance procedure allowing a real time-scale representation of vibrations of any
non-linear dynamical system adopting a multi-resolution approach of the underlying
phenomena. This wavelet-balance method is described in &a wavelet-balance method to
investigate the vibrations of nonlinear dynamical systems' (S. Pernot and C. H. Lamarque)
to be submitted for publication.
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